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Abstract—For the first time, an adjoint neural network
method is introduced for sensitivity analysis in neural-based
microwave modeling and design. The proposed method is appli-
cable to generic microwave neural models including variety of
knowledge-based neural model embedding microwave empirical
information. Through the proposed technique, efficient first-
and second-order sensitivity analysis can be carried out within
the microwave neural network infrastructure using neuron
responses in both the original and adjoint neural models. A new
formulation of simultaneous training of original and adjoint
neural models allows robust model development by learning not
only the input/output behavior of the modeling problem, but also
its derivative data. The proposed technique is very useful for
neural-based microwave optimization and synthesis, and for ana-
lytically unified dc/small-signal/large-signal device modeling and
circuit design. Examples of high-speed very large scale integration
system interconnect modeling and optimization, large-signal FET
modeling, and three-stage power-amplifier simulation utilizing
the proposed sensitivity technique are demonstrated.

Index Terms—Design automation, modeling, neural networks,
sensitivity.

|. INTRODUCTION

RTIFICIAL neural networks have been recently recog-

nized as a useful vehicle for RF and microwave modeling
and design [1]. Neura network models can be trained from
electromagnetic (EM)/physics simulation or measurement data
and subsequently used during circuit analysis and design. The
models are fast and can represent EM/physics behaviors it
learned, which otherwise are computationally expensive. Var-
ious types of input—output information in linear and nonlinear
microwave design have been used for neural network learning,
such as EM solutions versus geometrical/physical parameters
[2]4], signal integrity solutions versus electrical parameters
[5], transistor electrical parameter versus electrical parameters
[6], transistor electrical versus physical parameters [7], and
more. The learning ability of neural networks is very useful
when an analytical model for a new device is not available,
e.g., modeling of a new transistor. A neura network can also
generalize, meaning that the model can respond to new data
that has not been used during training. Neural models can be
more accurate than polynomial regression models, handle more
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dimensions than lookup table models, and alow more automa:
tion in model development than conventional circuit models.
Microwave researchers have demonstrated this approach in a
variety of applications such as modeling and optimization of
high-speed very large scale integration (VLSI) interconnects
[2], coplanar waveguide (CPW) circuits [8], spiral inductors
[9], microwave FETs and amplifiers [10], [11], CMOS and
HBTs[12], [13], global modeling [14], and yield optimization
and circuit synthesis [10], [15], [16]. Knowledge-based ap-
proaches combining microwave empirical or equivalent-circuit
models together with neura network learning have also been
studied [7], [17], [18] to further improve the training efficiency
and model reliability.

Thispaper addressesanew task inthisarea, i.e., neural-based
sensitivity analysis. Sensitivity information is very im-
portant for circuit optimization [19], [20], and for unified
dc/small-signal/large-signal modeling and circuit design [21].
In the case of neural networks, first-order sensitivity analysis
has been studied, e.g., for networks with binary responses for
signal-processing purposes [22] and for multilayer perceptron
structures used in microwave modeling and design [16], [23].
However, to perform sensitivity analysisin more generic neural
model structures including embedded microwave knowledge,
and to train the networks to learn from sensitivity datathat arise
during microwave modeling, remain an unsolved task.

For the first time, a novel adjoint neural network sensitivity
analysistechniqueis presented in this paper, which allows exact
sensitivity to be calculated in ageneral neural model accommo-
dating microwave empirical functions, equivalent circuit, aswell
as conventional switch-type neurons in an arbitrary neural net-
work structure. Theadjoint neural network structureisexcited by
aunit excitation corresponding to the output neuronsintheorig-
inal neural network. A new formulation allowsthetraining of the
adjoint neural models to learn from derivative training data. An
elegant derivationis presented where the first- and second-order
derivative calculation are carried out using the neural network
infrastructure through a combination of back-propagation pro-
cesses in both the original and adjoint neural networks. Using
thesecond-order derivative, weare ableto train aneural network
model to learn not only microwave input/output data, but also
its derivative information, which is very useful in simultaneous
dc/small-signal/large-signal device modeling.

In Section 1, the microwave neural modeling problemissum-
marized. In Section Ill, we formulate the new adjoint sensi-
tivity technique and present its structure including descriptions
of adjoint neurons and links, and element derivative neurons
(EDNSs). We then formulate a combined training of original and
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adjoint neural networks and derive the sensitivity formulas for
both first- and second-order derivatives using the neural network
error propagation infrastructure. In Section 1V, the proposed
sensitivity analysistechniqueis applied to high-speed VLSI in-
terconnect modeling and optimization, large-signal FET mod-
eling, and three-stage power-amplifier simulation examples.

1. MICROWAVE NEURAL MODELING: PROBLEM STATEMENT

Let  represent an INV,.-vector containing parameters of ami-
crowave device/circuit, e.g., gate length and gatewidth of an
FET, or width and spacing of transmission lines. Let ¢ repre-
sent a V,,-vector containing the responses of the device/circuit
under consideration, e.g., drain current of an FET, or mutual
inductance between transmission lines. The physic¥YEM rela
tionship between y and & can be highly nonlinear and multidi-
mensional. The theoretical model for this relationship may not
be available (e.g., a new semiconductor device), theory may be
too complicated to implement, or the theoretical model may be
computationally too intensive for online microwave design and
repetitive optimization (e.g., three-dimensional full-wave EM
analysis inside a Monte Carlo statistical design loop). We aim
to develop afast and accurate neural model by teaching/training
aneural network to learn the microwave problem. Let the neural
network model be defined as

y = y(z,w) @

where w represents the parameters inside the neural network,
aso caled the weight vector. A neura network realization of
the z—y relationship is through a network of interconnected
neurons. The most widely used neural network structure is the
feed-forward multilayer perceptrons [1], [22], where neurons
are grouped into layers, and each neuron in a layer acts as a
smooth switch that produces a response between the low and
high state according to the weighted responses of all neurons
from the preceding layer. The neural network structure allows
the ability to represent multidimensional nonlinear input/output
mappings accurately, and to evaluate ¥ from x quickly. To en-
able a neural network to represent a specific microwave z—y
relationship, we first train the neural network to learn the mi-
crowave data pairs (zs, ds), where z, isasample of z, d; isa
vector representing the y data generated from microwave sim-
ulation or measurement under given sample z,, and s is the
sampleindex. For training purpose, we define an error function
E(w) as

]Vy
Bw)=5 33 (hl@w) —di)’ @

sCTr k=1
wheredy,; isthe kth element of d, y (., w) isthe kth output of
the neural network for input samplez, and Z'r isan index set of
all training samples. The objective of neural network training is
to adjust neural network connection weights w such that £(w)
isminimized. A trained neural model can then be used online
during microwave design stage providing fast model evaluation
replacing original slow EM-device simulators. The benefit of
the neural model is especially significant when the model is
highly repetitively used in design processed such as optimiza-

tion, Monte Carlo analysis, and yield maximization [24].

e
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Fig.1 Typical neuron, say, the :th neuron, in the original neural network. The
neuron receives stimulus from responses of other neurons z;, j < ¢, processes
the stimulus using a processing function f;(z, p,), and produces a response
z;. p, iIsavector of parameters for the processing function. X; is an external
stimulus.

Our present task is to develop a technique for sensitivity
analysis of y with respect tox of a microwave neura model
for neural-based circuit optimization, and to develop a
training technique to alow the neural model to simultane-
oudy learn the z—y relationship and derivative information
of y with respect to = in microwave design. The second task
involves the derivation of second-order sensitivity information.
In addition, we require that the technique be applicable not
only for multilayer perceptron structure, but also for genera
structures and knowledge-based neural networks including
microwave empirical functions in neurons.

I1l. PROPOSED ADJOINT NEURAL NETWORK APPROACH

A. Formulation of Two Neural Models: Original and Adjoint
Neural Model

Two models, one called the original neural network model
and the other defined as the adjoint neural network model, are
utilized in the proposed sensitivity analysis technique. Each
model consists of neurons and connections between neurons.
Each neuron receives and processes stimuli (inputs) from
other neurons and/or external inputs, and produces a response
(output). Here, we introduce a generic framework in which
microwave empirical and equivalent models can be coherently
represented in the neural network structures, and connections
between neurons can be arbitrary allowing different types of
microwave neural structures to be included.

Suppose for a generic neuron, say, neuron ¢ in the original
model, the responseis z; and the external input to thisneuronis
X;. Let N bethetotal number of neuronsin the original neura
network and z = [21, 72, ..., zn]T. In order to accommodate
microwave empirical knowledge, we use anotation f;(z,p;) to
represent the processing function for neuron i where p, could
represent either the neuron connection weights or parameters
in amicrowave empirical/equivalent model, as shownin Fig. 1.
The collection of p,, ps, . .., p5 formsthe weight vector w for
the overall neural model. For example, if neuron ¢ isasigmoid
switch neuron, then fi(z,p;) = 1/(1 + e %), where p,
is an N-vector and its elements represent connection weights
between neuron ¢ and other neurons. For another example,
fi(z,p;) could represent an empirical formulafor an FET drain
current versus terminal voltages and physical/geometrical pa-
rameters 7). If df; /dz; isnonzero (or zero), then neuron is (or
isnot) connected from neuron 3. In such away, thisformulation
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allows us to represent not only multilayer perceptrons, but also
arbitrary connections between neurons and knowledge-based
neural networks.

A neuron who receives stimulus from outside the neural net-
work is called an input neuron. A neuron whose response be-
comes the output of the overall neural network model is called
an output neuron. A neuron whose stimulus is from responses
of other neurons and whose response becomes stimulus to other
neurons is called a hidden neuron. Let 7 and K be defined as
index sets containing indexes of input neurons and output neu-
rons, respectively, i.e.,

I = {{]if stimulus to neuron is from neural model
external inputs, i.e.,z }

K = { k|if response of neuron k is an output of the
overall neurd model, i.e., y }

Assuming the neuron indexes are numbered consecutively
starting from the input neurons, through hidden neurons, and to
the outputs neurons. The feed-forward calculation of the orig-
inal model can be defined as

2y = fz(zvpi) +X17 Xl - {07 'L g] (3)

calculated sequentialy for ¢ = 1, 2,..., N. The outputs of
the original neural model y will be the neuron responses at the
output neurons, i.e, y; =z, k =1+ N — N, k € K.

Now we introduce the adjoint neural model, which consists
of N adjoint neurons. Let 75‘ be the response of the jth adjoint
neuron. We interpret 75‘ as the gradient of the original neural
model output with respect to thelocal response of the jth neuron
in the original neural model, i.e.,

K 0z,

i 4
where k and £ € K indicates an output neuron of interest for
which sensitivity is to be computed. In most of the follow pre-
sentation, we use 2; to represent 2/ for smplicity.

The processing function for this adjoint neuron is defined as
alinear function
N

) ofi . 1, k=j
5= 2 9, GOk ‘5’”:{0, k;«éj’ ©)
i=j+1

where(df;)/(9z;), which could be derivativesfrom microwave
empirical functions, are the local derivatives of original neuron
functions.

Let J be the Jacobian matrix ((3f%)/(92))T, where f =
[f1, f2,---, fn]. For generic feed-forward neural networkswith
neuron indexes numbered consecutively starting from the input
neurons, through hidden neurons to the outputs neurons, we
have (9£:)/(9z;) = 0ifj > i.

Equation (5) is equivaent to

(A=) -2 =[5 Sk Sun]” (6)

wherelisan N x N identity matrix. Since (1 — J)T is upper
diagonal, to perform “feed-forward” computation in the adjoint
model, wefirst initialize the last several adjoint neurons (corre-
sponding to the output neuronsin the original neural model) by
Kronecker functions z; = 65,5 € K.Wethen calculate (5)

noo»n $
24 25 3
2 )
k) 4
2 <4 25
X fcl 22
(3 (b)

Fig. 2 Example illustrating: (a) original neural model and (b) basic adjoint
neural model for sensitivity analysis. The input (output) neurons in the adjoint
model correspond to the output (input) neurons in the original model. The
neuron processing sequence in the adjoint model is the reverse of that in the
original model.

backward according to the neuron sequencej = N — 1, N —
2, ..., 1 without solving equations. Thefinal desired sensitivity
solution of theoriginal z—y model can now be obtained explicitly
from the adjoint model as (9y;)/(0x;) = (0z1)/(0z;) = %,
ke K,jeli=k+ Ny,— N.Noticethat theadjoint neurons
receiving nonzero external excitation (i.e., é;;) correspond tothe
output neuronsintheoriginal neural model,i.e,j = k € K.

B. Basic Adjoint Neural Model Structure

Asformulatedin (5), theinput (output) neuronsin the adjoint
model correspond to the output (input) neurons in the original
model, and the sequence of the neuron processing in the adjoint
model is exactly the reverse of that in the original neural model.
With this concept, a basic adjoint neural network structure can
be created by flipping the original neural model between input
and output. The connections between the adjoint neurons ¢ and
J has aweight value equal to (8f;)/(8z;) (to be referred to as
local derivative), and processing functions for all adjoint neu-
rons are linear.

Here, we use an exampl e to show how to setup abasic adjoint
neural model from a given original neural model. The original
model is given in Fig. 2(a) The total number of neuronsin the
origina model is N = 5.

Knowing that the adjoint neural model isthe" reverse” version
of origina neural model, we realize the adjoint model structure
shown in Fig. 2(b), where, from (5), we have

53 =54 Ofa + 35 - 9fs
823 823
sy s, O, 0N
822 822
Bl =2 gﬁ + 23 gfl)’ (7)
By providing vaues of (3f4)/(023), (8f5)/(0z3),

(0f1)/(022), (9f5)/(022), (0f3)/(0z1), and (9 f2)/(9z1) as
the connection weightsin Fig. 2(b), we obtain the basic adjoint
neural network.

This basic adjoint neural model can be used for first-order
sensitivity analysis and for optimization such as physical/ge-
ometry optimization of EM problems. When the neural model
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Fig. 3 Relationship between the ith original neuron and the fictitious EDNs.

structure is multilayer perceptron, our technique becomes
equivalent to the existing sensitivities in [16] and [23]. Our
method described above expands sensitivity analysisto general
microwave neural models such as knowledge-based neural
models embedding microwave empirical information.

C. Trainable Adjoint Neural Model Structure

Here, we consider a novel and advanced neural modeling re-
quirement, i.e., to use sensitivity astarget datafor learning. This
can be useful for enhancing reliability of models and for ad-
dressing challenges in microwave modeling involving different
domains, e.g., large-signal versus small-signal domains because
small-signal parameters embed the derivativeinformation of the
large-signal model. Here, we propose to train adjoint neural
models to achieve this task.

If the adjoint neural model is to be trained, the connection
weights in the adjoint neural model will vary with respect to
(dependent upon) training parameters in both the adjoint and
original models. In order to derive a training technique using
the neural model framework, we add a set of fictitious neurons,
called EDNs, whose processing functions are exactly the local
derivatives (9f,)/(8z;). These EDNs are stimulated by (de-
pendent upon) neurons in the original neural model, and the
responses of the EDNsbecomethe stimulusto the adjoint neural
model. In general, the EDNSs can be created from each neuron
in the original neural model shown in Fig. 3. The EDNSs share
the same stimuli and parameters as their corresponding original
Neurons.

The overall sensitivity analysis framework is shownin Fig. 4
including the original model, adjoint model, and EDNs, where
{x1x27 e 7-7;NI}! {y1y27 e 7yNy} and {'%1-%27 M -%Ny}!
{91792, ...,9n, } aretheinputs and outputs of the original and
adjoint neural models, respectively.

For the adjoint model, the relationships between inputs and
outputs are decided in Table 1.

Here, we use the example from Fig. 2 to show the setup of
atrainable adjoint neural model from the given origina neural
model. The EDNSs are created from the original model shown
in Fig. 5(a) and are connected to the adjoint neural model illus-
trated in Fig.5 (b), where the EDNs are defined as

afs
(922
afs
(921

2,’3// =

2,’3/ fd

yioyx ot w, 1S o g
] E |-

Original — D Adjoint
Neural Model : N i Neural Model
T S .

X1oxy e Xy, ok o Ry,

Fig. 4 Origina neural model, adjoint neural model, and EDNs. The adjoint
model in this setup is trainable.

TABLE |
RELATIONSHIP BETWEEN INPUTS AND OUTPUTS OF ADJOINT NEURAL-MODEL.
INPUTS TO THE ADJOINT MODEL ARE UNIT EXCITATIONS APPLIED TO
AN ADJOINT INPUT NEURON, WHICH CORRESPONDS TO AN OUTPUT
NEURON IN THE ORIGINAL NEURAL MODEL

Input % Output §
oo - o IR TR 78
9%, ox, dx,, |
010 - 0 Y P 9
| 0x, Ox, axwa
1.0 L
12k = N, | dx, o, axy |
[0 00 .- IJ aYN) a)INy ) ayzvy
ox, ox, Oxy

D. Combined Training of the Adjoint and the Original Neural
Models

Let g]’? represent thederivativetraining data(i.e., desired target
value) for thederivative (dz,) /(dxz;) k € K. Letgrepresentthe
derivativetraining dataincl udinggj’? foralk € K,j € I.Wefor-
mul ateanew training task such that the neural model y(x, w) fits
not only thez—y rel ationship, but simultaneously al sotherequired
derivativerelationship of ¢ with respectto .

To achieve this goal, we utilize the adjoint neural network
model such that the training task becomes simultaneoustraining
of the original and the adjoint neural models. L et the per sample
training error be defined as

2
Z(zk_dk)2+W2 Z <§Zk i%k) ©)

iCILkCK ’
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(b)

Fig. 5 lllustration of EDNs and trainable adjoint model for the example in
Fig. 4. (a) Original neural model with EDNscreated. (b) Trainable adjoint neural
model. Thesingle or double prime denote EDNs, e.qg., 4/ and 4// represent EDNs
created from neuron 4 of (a) and used in the adjoint neural model of (b).

where E, and E, represent the training error from original and
adjoint neural models, respectively, subscripts ¢ and & (used
for z, z, d, and g) indicate original input neuron ¢ and orig-
inal output neuron k&, respectively, and W and W, are weights
used to balance emphasis between training original and adjoint
models. We also call E, and E, the original training error and
adjoint training error, respectively.

The overall training error will be this per sample error E ac-
cumulated over various samplesin training data set 7’». During
training, both the original and adjoint neural models share a
common set of parametersp,, ¢ = 1,2,..., N to ensure con-
sistency between original and adjoint models, and/or to ensure
that training original and adjoint models reinforce each other’s
accuracy.

Our formulation can accommodate the following three types
of training situations.

1) Train the original neural model using input/output data
(z, d). After training, the outputs of the adjoint model au-
tomatically become an explicit derivative of the original
input/output relationship.

2) Traintheadjoint model to learn derivativedata(x, g). The
original model will then give original input/output (i.e.,
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xz—y) relationship, which has the effect of providing an
integration solution over the derivative training data.

3) Train both the original and adjoint models together to
learn (z,d) and (z,g) data, which will help the neura
model to be trained more accurately and robustly.

Fig. 6 showsthose types of training. We can achieve these three
training cases using our general formulation of (8) by setting:
)W, =0;2) Wy = 0; 0r3) Wy # 0and W, # 0, respectively.

E. Second-Order Sensitivity Analysis

Training is to adjust neural network internal parameters p;,
for each neuron such that the accumulated training error of E
is minimized. The training agorithms, such as the conjugate
gradient method, quasi-Newton method, and back-propagation
[1] typically require the derivative of E with respect to p,.

First, considering thetraining errors dueto training of the ad-
joint neural model to learn input/output derivative data, it be-
comes necessary to perform second-order sensitivity analysis.

Let
Ea = Z Ea,k

be defined as the derivative training error for each sample data,
where E,L & Isthe training error between the adjoint model and
the sensitivity data for the kth output neuron in the origina
model. Let +; represent an element in vector p,, which are the
parameters of the :th neuron in the original model. To find the
derivatives required to train the adjoint model for each sample,
we firgt differentiate £, 5, as

OE, ), X A% s 0z
2 — W Az — i)t T = .
aY; 726; 2 (% = gna) aY; aY;
where G is a column vector of size N with elements
G:{WQ'(%—QM), tel

©)

(10)

0, 11
which is the training error at the output neuron in the adjoint
model, i.e,, adjoint neuron ¢. To obtain (9z) /(8 ), we can dif-
ferentiate (6) with respect to parameter 1); as

. N T
1-nt aa;i - <gZi +n;1 aaan : g;"> =0 (11
Equation (10) can now be replaced by

~ N T
a(fd‘j;’“ =G". [a-n"" <gZi + Zl aaan gﬁ) 3
n_7,+ (12)

Let 2 be defined as a vector solution for

1-J) :=G. (13)

2 can be interpreted as error propagation signal in the adjoint
neural model, which is solved from back-propagation in the ad-
joint model according to the neuron processing sequence j =
2,3,..., N by initidizing 2, = W, - (41 — gx1), and

j—1
(14)
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Fig. 6 (a) Training to learn origina (z,y) input—output relationship, i.e., to learn from data (x, d). After training, the adjoint model automatically provides
explicit sensitivity information of y versus x. (b) Training to learn derivation information of y with respect to «, i.e., to learn from data (x, g). After training, the
original model providesan (z, y) relationship with an integration effect on training datag. (c) Training to simultaneously learn both input—output and its derivative
information, enhancing reliability of the neural model.

Equation (12) now becomes be merged together with the error propagation in the origina

5 5 N 97 8 g model. Notice that 2, 2, and 2 are all defined corresponding
OBap _ 37 < J Z J zn> 5 to the sensitivitykof selected neuron k, as in (4), which means
81/)7 81/;7 n=t+1 azﬂ 81/;7 ?:“J = ?:“k, ;:“J = éj’ aljd ;1 = EJ
Lt S i Now we include E, to consider the derivative for the total
= Z %5, 09 training error per sampleof (8). Utilizing (15) and (16), we have
i <y . . .
SR 0F _0E,  0E,
— s Pfom Ozn 9p.  Op. | v
N N S I I ,
n=i+1 \ j=1 m=j+1 0702, O Oz, 0f; N
o = Wi (2 —dn) > %,
where (9% f;)/(0z;04;) represents second-order derivative in- kek dz; Op; it
formation in the individual neurons. ie1 y
Next, we define a new back-propagation from the adjoint Ozn 8fi +Z§’%‘ A ANt
J

(17)

. / . Zi
neural model into the original neural model through EDNs as 9z Op; 7 Oz0p;

N

N-1 .
=% S P fm P (16) Where E, istheoriginal training error for each sample data
' Pt 10202, T According to (17), there are three concurrent back-propaga-
T (G41.m+1)

tion paths in our task, corresponding to the three terms in the
equation. The first path is that of the training error in the orig-
ind network, i.e, Wy - (z; — d;) j € K, which starts from

The last term in (15) can be handled by injecting %, into
the original neural model as an additional error propagation to
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the output neurons in the original model and back-propagates
through the original hidden neurons toward the original input
neurons. The second path is that of the adjoint training error,
i.e, G =Ws- (% — gni), ¢ € I, which starts from the adjoint
output neurons through the EDNs and into the origina neural
network toward the original input neurons. Thethird path isthat
of the adjoint training error, i.e., G; ¢ € I, which starts from
output neuronsin the adjoint neural model and back-propagates
toward the EDNs.

To formulate our training into an efficient and concurrent
original/adjoint neural network back-propagation scheme, we
further process the first and second paths as follows.

Let o; = (JE)/(dz;) be the new combined local gra-
dient representing the original and derivative training error
back-propagated to neural j in the origina model, i.e., the
back-propagation of path 1 and path 2 merged together
at neuron j in the original neural model. This combined
back-propagation continues toward the original input neurons,
merges again with 2 (which is the back-propagation from the
adjoint model through EDNsto the original model), and arrives
at every neuron the combined back-propagation encounters
along the way as follows:

a af -
05 = Z O—m'a—zj—i_Dj—’_Z’%jv
m=j+1 ke K
_ Wiz —dy),  JEK
bi= {o, K 19

where D, isthetraining error for back-propagation path 1 &t the
original output neurons. The derivative required by training due
to thefirst two partsin (17) isthen o; - (3f;)/(9p;).

The final derivative for training the combined original and
adjoint model is now

9E _  3f; ke Ofi ok
o, = O 2 B,

T keK j=1

(19)

which includes the first- and second-order derivatives. Notice
that even though the derivation processis complicated, thefinal
result of (19) is surprisingly simple and elegant, fully compat-
ible with the neural network concept of error propagation. Also
noticethat thefirst-order sensitivity analysisin Section I11-A re-
quires only one back-propagation, whereas the combined first-
and second-order sensitivity technique of (19) reguires three
error propagation paths with paths 1 and 2 merged asthe propa-
gation continuesalong theway. The proposed method issuitable
for incorporation into a microwave neural modeling software.

IV. EXAMPLES
A. Example 1

Fast and accurate sensitivity analysis of coupled transmis-
sion lines is important for high-speed VLS interconnect op-
timization [24] and statistical design. This example illustrates
the proposed sensitivity technique for an arbitrary neura net-
work structure where microstrip empirical formulas are used as
part of a knowledge-based neural network structure shown in
Fig. 7(). Theinputsto our model (x) are conductor widths
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Fig. 7 Knowledge-based coupled transmission-line neural model of mutual
inductance (L12) for VLSI interconnect optimization. wy, ws, s, h, &,., and
f are conductor widths, spacing between coupled interconnects, substrate
thickness, dielectric constant, and frequency, respectively. (a) Original neural
model. (b) Basic adjoint neural model, which will be used by optimization to
perform solution space analysis and synthesis of this element.

(w1, w2), Spacing between coupled interconnects (s), substrate
thickness (1), dielectric constant (e,.), and frequency (f). The
output of model (y) is mutual inductance Ly5.

After training the originad model of Fig. 7(a) using Neuro-
Modelert with accurate EM-based microstrip data (100 sam-
ples) obtained by LINPAR [25], we use the proposed method to
provide exact derivatives of electrical parameters of the trans-
mission line with respect to the physical—geometrical parame-
ters needed in VLS| interconnect optimization. The sensitivity
solution from the basic adjoint neural model of Fig. 7(b) isver-
ified with brute-force perturbation in Table Il. Fig. 8 compares
our sensitivity versus that from perturbation as a continuous

INeuroModeler, ver. 1.2, Q. J. Zhang, Carleton. Univ., Ottawa, ON, Canada.
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TABLE I
EXAMPLE OF SENSITIVITY BETWEEN PERTURBATION TECHNIQUE AND ADJOINT
TECHNIQUE FOR THE VLS| INTERCONNET MODELING EXAMPLE. GOOD
AGREEMENT IS ACHIEVED

Perturbation Adjoint Difference
Sensitivity
Technique Technique (%)
dLp/dw,; -0.1440 -0.1435 0.354
dLo/dw, 0.0620 0.0616 0.645
dL,y/ds -0.8462 -0.8514 0.610
dLyy/dh 05338 0.5337 | 0.018
dL;yde. -0.0010 -0.0010 0.001
dLy/dfreq -0.0037 -0.0037 0.001
01 o .
— Sensitivity by proposed adjoint method
T -0.05 - ® Sensitivity by perturbation
=
~
$ 011
3
2
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R
wn
§
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Fig. 8 Sensitivity verification for VLS| interconnect modeling example.
(@) dL12/dw, versus s. (b) dL,2/ds versus h. Good agreement is observed
between our sensitivity solution and EM perturbation sensitivity.

function in s and h sub-spaces, respectively. The good agree-
ment in those figures verifies our adjoint model. Notice that the
exact sensitivity is obtained through the adjoint neural model
without extra training. Without the neural model, such sensi-
tivity would have been computed by perturbation in EM simu-
lators. The computation timefor the proposed method compared
to EM perturbation solution is 3 s versus 2660 s for sensitivity
analysis of 1000 microstrip models, which are typically needed
in optimization of a network of VLSI interconnects.

Now we consider an advanced use of the neural model just
trained. The purpose is to find the solution of feasible regions
of interconnect geometry ( of the neural model) from the given
budget on electrical parameters (y of the neural model). Thisis

30

Lpz<21nH L <52nH @

(s in mils)

L;;<114nH

Separation between coupled interconnects

Substrate Height (h in mils)

Fig. 9 Solution space analysis. Feasible regions of s—h of VLSI interconnect
design for given design budgetson L, . This solution space is obtained after 40
separate optimizations, where gradient information required by optimization is
supplied by the adjoint model of Fig. 7(b).

also called design solution space analysis, which is very useful
for synthesis of VLSI interconnects and for making tradeoff de-
cisionsduring early design stagesof VL S| systems. A basic step
isto use optimization to find inputs « of the neural model from
given specificationsony. Theoverall solution spaceissolved by
repeatedly performing such optimization for avariety of ¢ spec-
ifications and avariety of z patterns. Fig. 9 shows a solution of
feasible space of s versus A for the various given design bud-
gets of mutual inductance L;». This solution is obtained with
40 optimizations of the trained neural model and the gradient
information required by optimization are provided by the ad-
joint model of Fig. 7(b).

B. Example 2

This example illustrates the integration effect of the adjoint
neural model. We first train only the adjoint neural model to
learn the nonlinear capacitor data, which is generated from Ag-
ilent-ADS.2 After training the adjoint model with 41 data sam-
ples, we then use the original neural model without re-training
(withinternal parameters updated according to Section I11-E) as
anonlinear charge model (i.e., Q-model). The charge model is
compared with analytical integration of the ADS capacitor for-
mula (Fig. 10). The good agreement in this figure verifies the
integration effect of training the adjoint neural model. This ex-
ample shows an interesting solution to one of the frequently en-
countered obstacles in devel oping a charge model for nonlinear
capacitors required for harmonic balance simulators with only
capacitor data available.

C. Example 3

This example shows large-signal device modeling using dc
and small-signal training data. The model used is a knowledge-
based approach, where the existing intrinsic electrical equiva
lent-circuit model is combined with neural network learning. In
practice, manually creating formulas for the nonlinear currents
and charge sources in an FET model could be very time con-
suming. Here, we use neural networksto automatically learnthe
unknown rel ationship of the gate-source charge 4, gate—drain

2Agilent-ADS, ver. 1.5, Agilent Technol., Palo Alto, CA.
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— Analytical integration of ADS formula

o Charge from neural model

-3.6 2.8 -2.0 -1.2 0.4 0.4
Voltage (V)

Fig. 10 Comparison of the charge model trained from nonlinear capacitance
date with that from analytical integration of ADS capacitance formula. Training
was done by training the adjoint neural model from the capacitance data. After
training, the original neural model automatically produces the charge model
achieving an integration effect of training data. The charge model for nonlinear
capacitors is useful for harmonic balance simulation.
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Fig. 11 Large-signa FET modeling including adjoint neural networks
trained by dc and bias-dependent .S-parameters. Here, adjoint neural networks
complement an intrinsic FET equivalent circuit by providing the unknown
nonlinear currents ({4., Iza) and charge (Q-). The small-signal S-parameters
imply the derivative information of the large-signal model. This example
shows combined training of the origina neural model to learn dc data and
simultaneously the adjoint neural modal to learn the small-signa \S-parameter
data. Microwave knowledge of a basic equivalent circuit is combined with
sub-neural models leading to a knowledge-based approach for FET modeling.

current 1,4, and drain-source current 1, as nonlinear functions
of gate-source and drain—source voltages V. and V., respec-
tively. However, we do not have explicitly the charge data (0,
and dynamic currents data I,q and Iy, for training the model.
The available training data is the dc and bias-dependent S-pa-
rameters of the overall FET, which, in our example, is gener-
ated using Agilent-ADS with the Statz model [26]. Therefore,
the neural models and the rest of the FET equivaent circuit
are combined into a knowledge-based model and together they
are trained to learn the training data, shown in Fig. 11. Both

0.06

0.04

I1;(A)

0.00 ¥~ . ' . .
0.0 1.0 2.0 3.0 40 50
Vs (V)

Fig. 12 Comparison between dc curves of the Statz Agilent ADS model (—)

and our knowledge-based neural FET model (0).

v

(© V,=326V,V, =06V

]
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(A V, =026V,V =06V
/
OV, =09V, V =-06V | - | | )
MV, =09V, V =00V -2.5 0.0 25
(b)

Fig. 13 Comparison between S-parameters of the ADS Statz model (—) and
our knowledge-based neural FET model at four of the 90 biaspoints. (a) { Vas =
326V, Ve, = =06V} and{Vy, = 0.26V, Vs = —0.6 V}. (b) {Vas =
09V, Ve = —-06V}and{Vy =09V, Vs = —0.0V}

S-parameter data and all the dc-bias data are used for simul-
taneous training involving all the origina and adjoint neural
models. Notice that learning S-parameters means learning the
derivative information of the large-signal model. After training,
agood agreement of dc and small-signal responses at al of the
90 bias points between our knowledge-based neural FET model
and those given by the ADS solution is observed, as shown in
Figs. 12 and 13.

We then used our complete knowledge-based neura FET
model in a three-stage power amplifier, shown in Fig. 14, for
large-signal harmonic balance simulation. The large-signal
response of the amplifier using our model agrees well with that
using the original ADS model illustrated in Fig. 15.
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Fig. 14 Three-stage amplifier where the FET models used are knowledged-based neural FET models trained from the proposed method following Fig. 11.
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Fig. 15 Comparison of the power amplifier large-signal responses. (a) Time-domain amplifier responses using the ADS Statz model and our knowledge-based
neural FET model. (b) Output spectrum of the amplifier using the ADS Statz model and our model. The neural model trained with dc and S-parameter datais used
here for harmonic balance-based amplifier design, made possible by the proposed approach of training the adjoint model.

Our example demonstrates the capability of the adjoint
neural networks in enhancing conventional FET models
through adding trainable nonlinear current or charge relation-
ships to the model. Such a trainable nonlinear relationship
is especialy beneficia when analytical formulas in the FET
problem are unknown or available formulas are not suitable.
By combining adjoint neural networks with the existing FET
models, one can improve the models efficiently without having
to go through the trial-and-error process typically needed
during manual creation of empirical functions. The proposed

method provides a new alternative for efficient generation of
nonlinear device models for use in large-signal simulation and
design.

V. CONCLUSION

This paper has presented a unified framework for neural-
based modeling and sensitivity analysisfor generic types of mi-
crowave neural model sincluding knowledge-based models. The
proposed method provides continuousand differentiable models
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with analytically consistent derivatives from raw information
present in the original training data. A novel and elegant first-
and second-order sensitivity analysis schemeallowsthetraining
of neural modelsto learn not only input—output relationshipsin
amicrowave component, but also its derivatives. The technique
is an important contribution to further realizing the flexibility
of neural-based approaches in linear and nonlinear microwave
modeling, simulation, and optimization.
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