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Abstract—For the first time, an adjoint neural network
method is introduced for sensitivity analysis in neural-based
microwave modeling and design. The proposed method is appli-
cable to generic microwave neural models including variety of
knowledge-based neural model embedding microwave empirical
information. Through the proposed technique, efficient first-
and second-order sensitivity analysis can be carried out within
the microwave neural network infrastructure using neuron
responses in both the original and adjoint neural models. A new
formulation of simultaneous training of original and adjoint
neural models allows robust model development by learning not
only the input/output behavior of the modeling problem, but also
its derivative data. The proposed technique is very useful for
neural-based microwave optimization and synthesis, and for ana-
lytically unified dc/small-signal/large-signal device modeling and
circuit design. Examples of high-speed very large scale integration
system interconnect modeling and optimization, large-signal FET
modeling, and three-stage power-amplifier simulation utilizing
the proposed sensitivity technique are demonstrated.

Index Terms—Design automation, modeling, neural networks,
sensitivity.

I. INTRODUCTION

ARTIFICIAL neural networks have been recently recog-
nized as a useful vehicle for RF and microwave modeling

and design [1]. Neural network models can be trained from
electromagnetic (EM)/physics simulation or measurement data
and subsequently used during circuit analysis and design. The
models are fast and can represent EM/physics behaviors it
learned, which otherwise are computationally expensive. Var-
ious types of input–output information in linear and nonlinear
microwave design have been used for neural network learning,
such as EM solutions versus geometrical/physical parameters
[2]–[4], signal integrity solutions versus electrical parameters
[5], transistor electrical parameter versus electrical parameters
[6], transistor electrical versus physical parameters [7], and
more. The learning ability of neural networks is very useful
when an analytical model for a new device is not available,
e.g., modeling of a new transistor. A neural network can also
generalize, meaning that the model can respond to new data
that has not been used during training. Neural models can be
more accurate than polynomial regression models, handle more
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dimensions than lookup table models, and allow more automa-
tion in model development than conventional circuit models.
Microwave researchers have demonstrated this approach in a
variety of applications such as modeling and optimization of
high-speed very large scale integration (VLSI) interconnects
[2], coplanar waveguide (CPW) circuits [8], spiral inductors
[9], microwave FETs and amplifiers [10], [11], CMOS and
HBTs [12], [13], global modeling [14], and yield optimization
and circuit synthesis [10], [15], [16]. Knowledge-based ap-
proaches combining microwave empirical or equivalent-circuit
models together with neural network learning have also been
studied [7], [17], [18] to further improve the training efficiency
and model reliability.

This paper addresses a new task in this area, i.e., neural-based
sensitivity analysis. Sensitivity information is very im-
portant for circuit optimization [19], [20], and for unified
dc/small-signal/large-signal modeling and circuit design [21].
In the case of neural networks, first-order sensitivity analysis
has been studied, e.g., for networks with binary responses for
signal-processing purposes [22] and for multilayer perceptron
structures used in microwave modeling and design [16], [23].
However, to perform sensitivity analysis in more generic neural
model structures including embedded microwave knowledge,
and to train the networks to learn from sensitivity data that arise
during microwave modeling, remain an unsolved task.

For the first time, a novel adjoint neural network sensitivity
analysis technique is presented in this paper, which allows exact
sensitivity to be calculated in a general neural model accommo-
dating microwave empirical functions, equivalent circuit, as well
as conventional switch-type neurons in an arbitrary neural net-
work structure. The adjoint neural network structure is excited by
a unit excitation corresponding to the output neurons in the orig-
inal neural network. A new formulation allows the training of the
adjoint neural models to learn from derivative training data. An
elegant derivation is presented where the first- and second-order
derivative calculation are carried out using the neural network
infrastructure through a combination of back-propagation pro-
cesses in both the original and adjoint neural networks. Using
the second-order derivative, we are able to train a neural network
model to learn not only microwave input/output data, but also
its derivative information, which is very useful in simultaneous
dc/small-signal/large-signal device modeling.

In Section II, the microwave neural modeling problem is sum-
marized. In Section III, we formulate the new adjoint sensi-
tivity technique and present its structure including descriptions
of adjoint neurons and links, and element derivative neurons
(EDNs). We then formulate a combined training of original and
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adjoint neural networks and derive the sensitivity formulas for
both first- and second-order derivatives using the neural network
error propagation infrastructure. In Section IV, the proposed
sensitivity analysis technique is applied to high-speed VLSI in-
terconnect modeling and optimization, large-signal FET mod-
eling, and three-stage power-amplifier simulation examples.

II. MICROWAVE NEURAL MODELING: PROBLEM STATEMENT

Let represent an -vector containing parameters of a mi-
crowave device/circuit, e.g., gate length and gatewidth of an
FET, or width and spacing of transmission lines. Let repre-
sent a -vector containing the responses of the device/circuit
under consideration, e.g., drain current of an FET, or mutual
inductance between transmission lines. The physics/EM rela-
tionship between and can be highly nonlinear and multidi-
mensional. The theoretical model for this relationship may not
be available (e.g., a new semiconductor device), theory may be
too complicated to implement, or the theoretical model may be
computationally too intensive for online microwave design and
repetitive optimization (e.g., three-dimensional full-wave EM
analysis inside a Monte Carlo statistical design loop). We aim
to develop a fast and accurate neural model by teaching/training
a neural network to learn the microwave problem. Let the neural
network model be defined as

(1)

where represents the parameters inside the neural network,
also called the weight vector. A neural network realization of
the – relationship is through a network of interconnected
neurons. The most widely used neural network structure is the
feed-forward multilayer perceptrons [1], [22], where neurons
are grouped into layers, and each neuron in a layer acts as a
smooth switch that produces a response between the low and
high state according to the weighted responses of all neurons
from the preceding layer. The neural network structure allows
the ability to represent multidimensional nonlinear input/output
mappings accurately, and to evaluate from quickly. To en-
able a neural network to represent a specific microwave –
relationship, we first train the neural network to learn the mi-
crowave data pairs , where is a sample of , is a
vector representing the data generated from microwave sim-
ulation or measurement under given sample , and is the
sample index. For training purpose, we define an error function

as

(2)

where is the th element of , is the th output of
the neural network for input sample and is an index set of
all training samples. The objective of neural network training is
to adjust neural network connection weights such that
is minimized. A trained neural model can then be used online
during microwave design stage providing fast model evaluation
replacing original slow EM-device simulators. The benefit of
the neural model is especially significant when the model is
highly repetitively used in design processed such as optimiza-
tion, Monte Carlo analysis, and yield maximization [24].

Fig. 1 Typical neuron, say, the ith neuron, in the original neural network. The
neuron receives stimulus from responses of other neurons z ; j < i, processes
the stimulus using a processing function f (zzz; ppp ), and produces a response
z : ppp is a vector of parameters for the processing function. X is an external
stimulus.

Our present task is to develop a technique for sensitivity
analysis of with respect to of a microwave neural model
for neural-based circuit optimization, and to develop a
training technique to allow the neural model to simultane-
ously learn the – relationship and derivative information
of with respect to in microwave design. The second task
involves the derivation of second-order sensitivity information.
In addition, we require that the technique be applicable not
only for multilayer perceptron structure, but also for general
structures and knowledge-based neural networks including
microwave empirical functions in neurons.

III. PROPOSED ADJOINT NEURAL NETWORK APPROACH

A. Formulation of Two Neural Models: Original and Adjoint
Neural Model

Two models, one called the original neural network model
and the other defined as the adjoint neural network model, are
utilized in the proposed sensitivity analysis technique. Each
model consists of neurons and connections between neurons.
Each neuron receives and processes stimuli (inputs) from
other neurons and/or external inputs, and produces a response
(output). Here, we introduce a generic framework in which
microwave empirical and equivalent models can be coherently
represented in the neural network structures, and connections
between neurons can be arbitrary allowing different types of
microwave neural structures to be included.

Suppose for a generic neuron, say, neuron in the original
model, the response is and the external input to this neuron is

. Let be the total number of neurons in the original neural
network and . In order to accommodate
microwave empirical knowledge, we use a notation to
represent the processing function for neuron where could
represent either the neuron connection weights or parameters
in a microwave empirical/equivalent model, as shown in Fig. 1.
The collection of forms the weight vector for
the overall neural model. For example, if neuron is a sigmoid
switch neuron, then , where
is an -vector and its elements represent connection weights
between neuron and other neurons. For another example,

could represent an empirical formula for an FET drain
current versus terminal voltages and physical/geometrical pa-
rameters [7]. If is nonzero (or zero), then neuron is (or
is not) connected from neuron . In such a way, this formulation
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allows us to represent not only multilayer perceptrons, but also
arbitrary connections between neurons and knowledge-based
neural networks.

A neuron who receives stimulus from outside the neural net-
work is called an input neuron. A neuron whose response be-
comes the output of the overall neural network model is called
an output neuron. A neuron whose stimulus is from responses
of other neurons and whose response becomes stimulus to other
neurons is called a hidden neuron. Let and be defined as
index sets containing indexes of input neurons and output neu-
rons, respectively, i.e.,

if stimulus to neuron is from neural model

external inputs, i.e

if response of neuron is an output of the

overall neural model, i.e

Assuming the neuron indexes are numbered consecutively
starting from the input neurons, through hidden neurons, and to
the outputs neurons. The feed-forward calculation of the orig-
inal model can be defined as

(3)

calculated sequentially for . The outputs of
the original neural model will be the neuron responses at the
output neurons, i.e., , , .

Now we introduce the adjoint neural model, which consists
of adjoint neurons. Let be the response of the th adjoint
neuron. We interpret as the gradient of the original neural
model output with respect to the local response of the th neuron
in the original neural model, i.e.,

(4)

where and indicates an output neuron of interest for
which sensitivity is to be computed. In most of the follow pre-
sentation, we use to represent for simplicity.

The processing function for this adjoint neuron is defined as
a linear function

(5)

where , which could be derivatives from microwave
empirical functions, are the local derivatives of original neuron
functions.

Let be the Jacobian matrix , where
. For generic feed-forward neural networks with

neuron indexes numbered consecutively starting from the input
neurons, through hidden neurons to the outputs neurons, we
have 0 if .

Equation (5) is equivalent to

(6)

where is an identity matrix. Since is upper
diagonal, to perform “feed-forward” computation in the adjoint
model, we first initialize the last several adjoint neurons (corre-
sponding to the output neurons in the original neural model) by
Kronecker functions , . We then calculate (5)

(a) (b)

Fig. 2 Example illustrating: (a) original neural model and (b) basic adjoint
neural model for sensitivity analysis. The input (output) neurons in the adjoint
model correspond to the output (input) neurons in the original model. The
neuron processing sequence in the adjoint model is the reverse of that in the
original model.

backward according to the neuron sequence ,
without solving equations. The final desired sensitivity

solution of the original – model can now be obtained explicitly
from the adjoint model as ,

, , . Notice that the adjoint neurons
receiving nonzero external excitation (i.e., ) correspond to the
output neurons in the original neural model, i.e., .

B. Basic Adjoint Neural Model Structure

As formulated in (5), the input (output) neurons in the adjoint
model correspond to the output (input) neurons in the original
model, and the sequence of the neuron processing in the adjoint
model is exactly the reverse of that in the original neural model.
With this concept, a basic adjoint neural network structure can
be created by flipping the original neural model between input
and output. The connections between the adjoint neurons and

has a weight value equal to (to be referred to as
local derivative), and processing functions for all adjoint neu-
rons are linear.

Here, we use an example to show how to setup a basic adjoint
neural model from a given original neural model. The original
model is given in Fig. 2(a) The total number of neurons in the
original model is .

Knowing that the adjoint neural model is the“reverse” version
of original neural model, we realize the adjoint model structure
shown in Fig. 2(b), where, from (5), we have

(7)

By providing values of , ,
, , , and as

the connection weights in Fig. 2(b), we obtain the basic adjoint
neural network.

This basic adjoint neural model can be used for first-order
sensitivity analysis and for optimization such as physical/ge-
ometry optimization of EM problems. When the neural model
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Fig. 3 Relationship between the ith original neuron and the fictitious EDNs.

structure is multilayer perceptron, our technique becomes
equivalent to the existing sensitivities in [16] and [23]. Our
method described above expands sensitivity analysis to general
microwave neural models such as knowledge-based neural
models embedding microwave empirical information.

C. Trainable Adjoint Neural Model Structure

Here, we consider a novel and advanced neural modeling re-
quirement, i.e., to use sensitivity as target data for learning. This
can be useful for enhancing reliability of models and for ad-
dressing challenges in microwave modeling involving different
domains, e.g., large-signal versus small-signal domains because
small-signal parameters embed the derivative information of the
large-signal model. Here, we propose to train adjoint neural
models to achieve this task.

If the adjoint neural model is to be trained, the connection
weights in the adjoint neural model will vary with respect to
(dependent upon) training parameters in both the adjoint and
original models. In order to derive a training technique using
the neural model framework, we add a set of fictitious neurons,
called EDNs, whose processing functions are exactly the local
derivatives . These EDNs are stimulated by (de-
pendent upon) neurons in the original neural model, and the
responses of the EDNs become the stimulus to the adjoint neural
model. In general, the EDNs can be created from each neuron
in the original neural model shown in Fig. 3. The EDNs share
the same stimuli and parameters as their corresponding original
neurons.

The overall sensitivity analysis framework is shown in Fig. 4
including the original model, adjoint model, and EDNs, where

, and ,
are the inputs and outputs of the original and

adjoint neural models, respectively.
For the adjoint model, the relationships between inputs and

outputs are decided in Table I.
Here, we use the example from Fig. 2 to show the setup of

a trainable adjoint neural model from the given original neural
model. The EDNs are created from the original model shown
in Fig. 5(a) and are connected to the adjoint neural model illus-
trated in Fig.5 (b), where the EDNs are defined as

Fig. 4 Original neural model, adjoint neural model, and EDNs. The adjoint
model in this setup is trainable.

TABLE I
RELATIONSHIP BETWEEN INPUTS AND OUTPUTS OF ADJOINT NEURAL-MODEL.

INPUTS TO THE ADJOINT MODEL ARE UNIT EXCITATIONS APPLIED TO

AN ADJOINT INPUT NEURON, WHICH CORRESPONDS TO AN OUTPUT

NEURON IN THE ORIGINAL NEURAL MODEL

D. Combined Training of the Adjoint and the Original Neural
Models

Let represent the derivative training data (i.e., desired target
value) for the derivative . Let represent the
derivative training data including for all , . We for-
mulate a new training task such that the neural model fits
notonlythe – relationship,butsimultaneouslyalsotherequired
derivative relationship of with respect to .

To achieve this goal, we utilize the adjoint neural network
model such that the training task becomes simultaneous training
of the original and the adjoint neural models. Let the per sample
training error be defined as

(8)
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(a)

(b)

Fig. 5 Illustration of EDNs and trainable adjoint model for the example in
Fig. 4. (a) Original neural model with EDNs created. (b) Trainable adjoint neural
model. The single or double prime denote EDNs, e.g., 40 and 400 represent EDNs
created from neuron 4 of (a) and used in the adjoint neural model of (b).

where and represent the training error from original and
adjoint neural models, respectively, subscripts and (used
for , , , and ) indicate original input neuron and orig-
inal output neuron , respectively, and and are weights
used to balance emphasis between training original and adjoint
models. We also call and the original training error and
adjoint training error, respectively.

The overall training error will be this per sample error ac-
cumulated over various samples in training data set . During
training, both the original and adjoint neural models share a
common set of parameters to ensure con-
sistency between original and adjoint models, and/or to ensure
that training original and adjoint models reinforce each other’s
accuracy.

Our formulation can accommodate the following three types
of training situations.

1) Train the original neural model using input/output data
. After training, the outputs of the adjoint model au-

tomatically become an explicit derivative of the original
input/output relationship.

2) Train the adjoint model to learn derivative data . The
original model will then give original input/output (i.e.,

– ) relationship, which has the effect of providing an
integration solution over the derivative training data.

3) Train both the original and adjoint models together to
learn and data, which will help the neural
model to be trained more accurately and robustly.

Fig. 6 shows those types of training. We can achieve these three
training cases using our general formulation of (8) by setting:
1) ; 2) ; or 3) and , respectively.

E. Second-Order Sensitivity Analysis

Training is to adjust neural network internal parameters
for each neuron such that the accumulated training error of
is minimized. The training algorithms, such as the conjugate
gradient method, quasi-Newton method, and back-propagation
[1] typically require the derivative of with respect to .

First, considering the training errors due to training of the ad-
joint neural model to learn input/output derivative data, it be-
comes necessary to perform second-order sensitivity analysis.

Let

(9)

be defined as the derivative training error for each sample data,
where is the training error between the adjoint model and
the sensitivity data for the th output neuron in the original
model. Let represent an element in vector , which are the
parameters of the th neuron in the original model. To find the
derivatives required to train the adjoint model for each sample,
we first differentiate as

(10)

where is a column vector of size with elements

which is the training error at the output neuron in the adjoint
model, i.e., adjoint neuron . To obtain , we can dif-
ferentiate (6) with respect to parameter as

(11)

Equation (10) can now be replaced by

(12)

Let be defined as a vector solution for

(13)

can be interpreted as error propagation signal in the adjoint
neural model, which is solved from back-propagation in the ad-
joint model according to the neuron processing sequence

by initializing , and

(14)
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(a) (b)

(c)

Fig. 6 (a) Training to learn original (xxx; yyy) input–output relationship, i.e., to learn from data (xxx; ddd). After training, the adjoint model automatically provides
explicit sensitivity information of yyy versus xxx. (b) Training to learn derivation information of yyy with respect to xxx, i.e., to learn from data (xxx; ggg). After training, the
original model provides an (x; yyyx; yyyx; yyy) relationship with an integration effect on training data ggg. (c) Training to simultaneously learn both input–output and its derivative
information, enhancing reliability of the neural model.

Equation (12) now becomes

(15)

where represents second-order derivative in-
formation in the individual neurons.

Next, we define a new back-propagation from the adjoint
neural model into the original neural model through EDNs as

(16)

The last term in (15) can be handled by injecting into
the original neural model as an additional error propagation to

be merged together with the error propagation in the original
model. Notice that , , and are all defined corresponding
to the sensitivity of selected neuron , as in (4), which means

, , and .
Now we include to consider the derivative for the total

training error per sample of (8). Utilizing (15) and (16), we have

(17)

where is the original training error for each sample data.
According to (17), there are three concurrent back-propaga-

tion paths in our task, corresponding to the three terms in the
equation. The first path is that of the training error in the orig-
inal network, i.e., , which starts from
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the output neurons in the original model and back-propagates
through the original hidden neurons toward the original input
neurons. The second path is that of the adjoint training error,
i.e., , which starts from the adjoint
output neurons through the EDNs and into the original neural
network toward the original input neurons. The third path is that
of the adjoint training error, i.e., , which starts from
output neurons in the adjoint neural model and back-propagates
toward the EDNs.

To formulate our training into an efficient and concurrent
original/adjoint neural network back-propagation scheme, we
further process the first and second paths as follows.

Let be the new combined local gra-
dient representing the original and derivative training error
back-propagated to neural in the original model, i.e., the
back-propagation of path and path merged together
at neuron in the original neural model. This combined
back-propagation continues toward the original input neurons,
merges again with (which is the back-propagation from the
adjoint model through EDNs to the original model), and arrives
at every neuron the combined back-propagation encounters
along the way as follows:

(18)

where is the training error for back-propagation path at the
original output neurons. The derivative required by training due
to the first two parts in (17) is then .

The final derivative for training the combined original and
adjoint model is now

(19)

which includes the first- and second-order derivatives. Notice
that even though the derivation process is complicated, the final
result of (19) is surprisingly simple and elegant, fully compat-
ible with the neural network concept of error propagation. Also
notice that the first-order sensitivity analysis in Section III-A re-
quires only one back-propagation, whereas the combined first-
and second-order sensitivity technique of (19) requires three
error propagation paths with paths 1 and 2 merged as the propa-
gation continues along the way. The proposed method is suitable
for incorporation into a microwave neural modeling software.

IV. EXAMPLES

A. Example 1

Fast and accurate sensitivity analysis of coupled transmis-
sion lines is important for high-speed VLSI interconnect op-
timization [24] and statistical design. This example illustrates
the proposed sensitivity technique for an arbitrary neural net-
work structure where microstrip empirical formulas are used as
part of a knowledge-based neural network structure shown in
Fig. 7(a). The inputs to our model are conductor widths

(a)

(b)

Fig. 7 Knowledge-based coupled transmission-line neural model of mutual
inductance (L ) for VLSI interconnect optimization. w ;w ; s; h; " ; and
f are conductor widths, spacing between coupled interconnects, substrate
thickness, dielectric constant, and frequency, respectively. (a) Original neural
model. (b) Basic adjoint neural model, which will be used by optimization to
perform solution space analysis and synthesis of this element.

, spacing between coupled interconnects , substrate
thickness , dielectric constant , and frequency . The
output of model is mutual inductance .

After training the original model of Fig. 7(a) using Neuro-
Modeler1 with accurate EM-based microstrip data (100 sam-
ples) obtained by LINPAR [25], we use the proposed method to
provide exact derivatives of electrical parameters of the trans-
mission line with respect to the physical–geometrical parame-
ters needed in VLSI interconnect optimization. The sensitivity
solution from the basic adjoint neural model of Fig. 7(b) is ver-
ified with brute-force perturbation in Table II. Fig. 8 compares
our sensitivity versus that from perturbation as a continuous

1NeuroModeler, ver. 1.2, Q. J. Zhang, Carleton. Univ., Ottawa, ON, Canada.



XU et al.: EXACT ADJOINT SENSITIVITY ANALYSIS FOR NEURAL-BASED MICROWAVE MODELING AND DESIGN 233

TABLE II
EXAMPLE OF SENSITIVITY BETWEEN PERTURBATION TECHNIQUE AND ADJOINT

TECHNIQUE FOR THE VLSI INTERCONNET MODELING EXAMPLE. GOOD

AGREEMENT IS ACHIEVED

(a)

(b)

Fig. 8 Sensitivity verification for VLSI interconnect modeling example.
(a) dL =dw versus s. (b) dL =ds versus h. Good agreement is observed
between our sensitivity solution and EM perturbation sensitivity.

function in and sub-spaces, respectively. The good agree-
ment in those figures verifies our adjoint model. Notice that the
exact sensitivity is obtained through the adjoint neural model
without extra training. Without the neural model, such sensi-
tivity would have been computed by perturbation in EM simu-
lators. The computation time for the proposed method compared
to EM perturbation solution is 3 s versus 2660 s for sensitivity
analysis of 1000 microstrip models, which are typically needed
in optimization of a network of VLSI interconnects.

Now we consider an advanced use of the neural model just
trained. The purpose is to find the solution of feasible regions
of interconnect geometry ( of the neural model) from the given
budget on electrical parameters ( of the neural model). This is

Fig. 9 Solution space analysis. Feasible regions of s–h of VLSI interconnect
design for given design budgets onL . This solution space is obtained after 40
separate optimizations, where gradient information required by optimization is
supplied by the adjoint model of Fig. 7(b).

also called design solution space analysis, which is very useful
for synthesis of VLSI interconnects and for making tradeoff de-
cisions during early design stages of VLSI systems. A basic step
is to use optimization to find inputs of the neural model from
given specifications on . The overall solution space is solved by
repeatedly performing such optimization for a variety of spec-
ifications and a variety of patterns. Fig. 9 shows a solution of
feasible space of versus for the various given design bud-
gets of mutual inductance . This solution is obtained with
40 optimizations of the trained neural model and the gradient
information required by optimization are provided by the ad-
joint model of Fig. 7(b).

B. Example 2

This example illustrates the integration effect of the adjoint
neural model. We first train only the adjoint neural model to
learn the nonlinear capacitor data, which is generated from Ag-
ilent-ADS.2 After training the adjoint model with 41 data sam-
ples, we then use the original neural model without re-training
(with internal parameters updated according to Section III-E) as
a nonlinear charge model (i.e., Q-model). The charge model is
compared with analytical integration of the ADS capacitor for-
mula (Fig. 10). The good agreement in this figure verifies the
integration effect of training the adjoint neural model. This ex-
ample shows an interesting solution to one of the frequently en-
countered obstacles in developing a charge model for nonlinear
capacitors required for harmonic balance simulators with only
capacitor data available.

C. Example 3

This example shows large-signal device modeling using dc
and small-signal training data. The model used is a knowledge-
based approach, where the existing intrinsic electrical equiva-
lent-circuit model is combined with neural network learning. In
practice, manually creating formulas for the nonlinear currents
and charge sources in an FET model could be very time con-
suming. Here, we use neural networks to automatically learn the
unknown relationship of the gate–source charge , gate–drain

2Agilent-ADS, ver. 1.5, Agilent Technol., Palo Alto, CA.
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Fig. 10 Comparison of the charge model trained from nonlinear capacitance
date with that from analytical integration of ADS capacitance formula. Training
was done by training the adjoint neural model from the capacitance data. After
training, the original neural model automatically produces the charge model
achieving an integration effect of training data. The charge model for nonlinear
capacitors is useful for harmonic balance simulation.

Fig. 11 Large-signal FET modeling including adjoint neural networks
trained by dc and bias-dependent S-parameters. Here, adjoint neural networks
complement an intrinsic FET equivalent circuit by providing the unknown
nonlinear currents (I ; I ) and charge (Q ). The small-signal S-parameters
imply the derivative information of the large-signal model. This example
shows combined training of the original neural model to learn dc data and
simultaneously the adjoint neural modal to learn the small-signal S-parameter
data. Microwave knowledge of a basic equivalent circuit is combined with
sub-neural models leading to a knowledge-based approach for FET modeling.

current , and drain–source current as nonlinear functions
of gate–source and drain–source voltages and , respec-
tively. However, we do not have explicitly the charge data
and dynamic currents data and for training the model.
The available training data is the dc and bias-dependent -pa-
rameters of the overall FET, which, in our example, is gener-
ated using Agilent-ADS with the Statz model [26]. Therefore,
the neural models and the rest of the FET equivalent circuit
are combined into a knowledge-based model and together they
are trained to learn the training data, shown in Fig. 11. Both

Fig. 12 Comparison between dc curves of the Statz Agilent ADS model (—)
and our knowledge-based neural FET model (o).

(a)

(b)

Fig. 13 Comparison between S-parameters of the ADS Statz model (—) and
our knowledge-based neural FET model at four of the 90 bias points. (a) fV =

3:26 V; V = �0:6 Vg and fV = 0:26 V; V = �0:6 Vg. (b) fV =

0:9 V; V = �0:6 Vg and fV = 0:9 V; V = �0:0 Vg

-parameter data and all the dc-bias data are used for simul-
taneous training involving all the original and adjoint neural
models. Notice that learning -parameters means learning the
derivative information of the large-signal model. After training,
a good agreement of dc and small-signal responses at all of the
90 bias points between our knowledge-based neural FET model
and those given by the ADS solution is observed, as shown in
Figs. 12 and 13.

We then used our complete knowledge-based neural FET
model in a three-stage power amplifier, shown in Fig. 14, for
large-signal harmonic balance simulation. The large-signal
response of the amplifier using our model agrees well with that
using the original ADS model illustrated in Fig. 15.
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Fig. 14 Three-stage amplifier where the FET models used are knowledged-based neural FET models trained from the proposed method following Fig. 11.

(a)

(b)

Fig. 15 Comparison of the power amplifier large-signal responses. (a) Time-domain amplifier responses using the ADS Statz model and our knowledge-based
neural FET model. (b) Output spectrum of the amplifier using the ADS Statz model and our model. The neural model trained with dc and S-parameter data is used
here for harmonic balance-based amplifier design, made possible by the proposed approach of training the adjoint model.

Our example demonstrates the capability of the adjoint
neural networks in enhancing conventional FET models
through adding trainable nonlinear current or charge relation-
ships to the model. Such a trainable nonlinear relationship
is especially beneficial when analytical formulas in the FET
problem are unknown or available formulas are not suitable.
By combining adjoint neural networks with the existing FET
models, one can improve the models efficiently without having
to go through the trial-and-error process typically needed
during manual creation of empirical functions. The proposed

method provides a new alternative for efficient generation of
nonlinear device models for use in large-signal simulation and
design.

V. CONCLUSION

This paper has presented a unified framework for neural-
based modeling and sensitivity analysis for generic types of mi-
crowave neural models including knowledge-based models. The
proposed method provides continuous and differentiable models
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with analytically consistent derivatives from raw information
present in the original training data. A novel and elegant first-
and second-order sensitivity analysis scheme allows the training
of neural models to learn not only input–output relationships in
a microwave component, but also its derivatives. The technique
is an important contribution to further realizing the flexibility
of neural-based approaches in linear and nonlinear microwave
modeling, simulation, and optimization.

REFERENCES

[1] Q. J. Zhang and K. C. Gupta, Neural Networks for RF and Microwave
Design. Boston, MA: Artech House, 2000.

[2] A. Veluswami, M. S. Nakhla, and Q. J. Zhang, “The application of neural
networks to EM-based simulation and optimization of interconnects in
high-speed VLSI circuits,” IEEE Trans. Microwave Theory Tech., vol.
45, pp. 712–723, May 1997.

[3] M. H. Bakr, J. W. Bandler, M. A. Ismail, J. E. Rayas-Sáanchez, and Q.
J. Zhang, “Neural space mapping optimization for EM-based design,”
IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2307–2315, Dec.
2000.

[4] P. M. Watson and K. C. Gupta, “EM-ANN models for microstrip vias
and interconnects in dataset circuit,” IEEE Trans. Microwave Theory
Tech., vol. 44, pp. 2495–2503, Dec. 1996.

[5] A. Veluswami, Q. J. Zhang, and M. S. Nakhla, “A neural network model
for propagation delays in systems with high-speed VLSI interconnect
networks,” in Proc. IEEE Custom Integrated Circuits Conf., Santa Clara,
CA, May 1995, pp. 387–390.

[6] K. Shirakawa et al., “Structural determination of multilayered large-
signal neural network HEMT model,” IEEE Trans. Microwave Theory
Tech., vol. 46, pp. 1367–1375, Oct. 1998.

[7] F. Wang and Q. J. Zhang, “Knowledge based neural models for mi-
crowave design,” IEEE Trans. Microwave Theory Tech., vol. 45, pp.
2333–2343, Dec. 1997.

[8] P. M. Watson and K. C. Gupta, “Design and optimization of CPW cir-
cuits using EM-ANN models for CPW components,” IEEE Trans. Mi-
crowave Theory Tech., vol. 45, pp. 2515–2523, Dec. 1997.

[9] G. L. Creech, B. J. Paul, C. D. Lesniak, T. J. Jenkins, and M. C. Calcatera,
“Artificial neural networks for fast and accurate EM-CAD of microwave
circuits,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 794–802,
May 1997.

[10] H. Zaabab, Q. J. Zhang, and M. S. Nakhla, “A neural network modeling
approach to circuit optimization and statistical design,” IEEE Trans. Mi-
crowave Theory Tech., vol. 43, pp. 1349–1358, June 1995.

[11] Y. Harhouss, J. Rousset, H. Chéhadé, E. Ngoya, D. Barataud, and J. P.
Teyssier, “The use of artificial neural networks in nonlinear microwave
devices and circuits modeling: An application to telecommunication
system design,” Int. J. RF Microwave Computer-Aided Eng. (Special
Issue), vol. 9, pp. 198–215, 1999.

[12] V. B. Litovski, J. I. Radjenovic, Z. M. Mrcarica, and S. L. Milenkovic,
“MOS transistor modeling using neural network,” Electron. Lett., vol.
28, pp. 1766–1768, 1992.

[13] V. K. Devabhaktuni, C. Xi, and Q. J. Zhang, “A neural network approach
to the modeling of heterojunction bipolar transistors from S-parameter
data,” in Proc. 28th Eur. Microwave Conf., Amsterdam, The Nether-
lands, Oct. 1998, pp. 306–311.

[14] S. Goasguen, S. M. Hammadi, and S. M. El-Ghazaly, “A global mod-
eling approach using artificial neural network,” in IEEE MTT-S Int. Mi-
crowave Symp. Dig., Anaheim, CA, 1999, pp. 153–156.

[15] P. M. Watson, C. Cho, and K. C. Gupta, “Electromagnetic-artifi-
cial neural network model for synthesis of physical dimensions for
multilayer asymmetric coupled transmission structures,” Int. J. RF
Microwave Computer-Aided Eng. (Special Issue), vol. 9, pp. 175–186,
1999.

[16] M. Vai and S. Prasad, “Neural networks in microwave circuit de-
sign—Beyond black box models,” Int. J. RF and Microwave Computer
Eng. (Special Issue), vol. 9, pp. 187–197, 1999.

[17] P. M. Watson, K. C. Gupta, and R. L. Mahajan, “Application of knowl-
edge-based artificial neural network modeling to microwave compo-
nents,” Int. J. RF and Microwave Computer-Aided Eng. (Special Issue),
vol. 9, pp. 254–260, 1999.

[18] J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, and Q. J. Zhang,
“Neuromodeling of microwave circuits exploiting space mapping tech-
nology,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2417–2427,
Dec. 1999.

[19] J. W. Bandler, Q. J. Zhang, and R. Biernacki, “A unified theory for
frequency-domain simulation and sensitivity analysis of linear and
nonlinear circuits,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.
1661–1669, Dec. 1988.

[20] J. W. Bandler and S. Chen, “Circuit optimization: The state of the art,”
IEEE Trans. Microwave Theory Tech., vol. 36, pp. 424–443, Feb. 1988.

[21] J. W. Bandler, R. M. Biernacki, S. H. Chen, J. Song, S. Ye, and Q.
J. Zhang, “Analytically unified DC/small-signal/large-signal circuit de-
sign,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1076–1082,
July 1991.

[22] S. Haykin, Neural Networks, A Comprehensive Founda-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[23] G. Antonini and A. Orlandi, “Gradient evaluation for neural-net-
works-based electromagnetic optimization procedures,” IEEE Trans.
Microwave Theory Tech., vol. 48, pp. 874–876, May 2000.

[24] Q. J. Zhang, F. Wang, and M. S. Nakhla, “Optimization of high-speed
VLSI interconnects: A review,” Int. J. Microwave Millimeter-Wave
Computer-Aided Eng., vol. 7, pp. 83–107, 1997.
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